If you watch “Jurassic World” with a paleontologist, you may be in for a buzzkill.

Not to say that Kenneth Carpenter, director and curator of paleontology at Utah State University Eastern Prehistoric Museum, in Price, Utah, did not give this latest film in the Jurassic Park franchise the benefit of the doubt. He did. After all, he watched “Jurassic Park 3” ALL the way through back in 2001. But come on, Hollywood, a Tyrannosaurus rex is no longer scary enough for you? You really had to genetically create that new Indominus rex dinosaur fellow?

“What was the point of that?” he asked. “T Rex is just as mean.”

To his credit, Carpenter began his assessment of the movie on a positive note – 109 words of praise out of 534.

“It is a great movie to introduce the next generation of kids to dinosaurs as living creatures, as opposed to static skeletons in a museum,” he said. “I think the computer graphics of the dinosaurs were overall good, and I really like how the running was captured for the Raptors.”

He also appreciated the way they portrayed the tails as true counterbalance, despite being way too flexible (more on that in a second).

“Nice hip wiggle as the body weight is shifted over the supporting foot,” he said. “The scales on the feet looked good, very avian-like. I think the interactive exhibits in the visitor center were cool? sort of a preview of the future for museums.”

But unfortunately, the counterbalancing tails, scaly feet, hip wiggling and trendy museum just weren't enough to sustain his interest.

“Frankly, I was bored within 10 minutes of the start,” he said. “I hope the franchise follows the path of real dinosaurs and becomes extinct.”

This coming from a person who still remembers watching “Godzilla, King of the Monsters” as a 5-year-old living in Tokyo, Japan, a film that eventually sparked a career in paleontology. He does not underestimate the power that movies, accurate or not, can have in a person’s life. So go see it, but be prepared for some blatant nudity of the featherless kind.

“We know from discoveries in China that almost all dinosaurs were feathered,” he said. “Granted, these are not all long-flight feathers of a bird, but the body feathers were more hair-like. That could have been captured by computer graphics.”

And if the movie included a “no mistreatment to animal” disclaimer, it certainly could not apply to the poor Stegosaurs. They would have been terribly miserable in the heat and humidity of Costa Rica because they were not adaptive for that type of environment, Carpenter said.

“They were adaptive to a warm, dry environment, more like Utah in the summertime,” he said. “Whereas Tyrannosaurus rex, Ankylosaurus and the Triceratops would be quite happy in Mississippi and Louisiana in the summertime.”

Yes, a Stegosaurs chilling in Utah’s San Rafael Swell would be more kind, and plausible, as would a much-less limber tail.
"Those aren’t ropes sticking out of their butts!" Carpenter said. “The tail of Stegosaurus is rather stiff and has limited motion because of the plates on the tail. These plates overlap several vertebrae, thus effectively restricting motion side-to-side.”

Carpenter also made a point about Stegosaurus spikes, saying that they are actually known to have projected from the side of the tail as effective weapons, not point up in the air. Yet, the use of side spikes on the Ankylosaurs also left him wagging his head.

“It was nice to see my buddies the Ankylosaurs, but the armor was all wrong,” he said. “They don’t have projecting spikes along the sides of the body as in the movie.”

When he saw the marine reptile, mosasaur, leap out of the water to get the so-called bad dinosaur, Carpenter said he was expecting it. The leaping was modeled after what he had worked on with National Geographic’s 2007 film “Sea Monsters – A Prehistoric Adventure.” But because the dinosaur DNA is supposed to come from dino blood cells trapped by biting insects, such as flies and mosquitoes, where, Carpenter asks, did the DNA for the mosasaur come from? “No biting flies in the ocean.”

No thunderous booms on the land, either.

“The thudding noises of the big dinosaurs walking is just plain wrong, despite the name Brontosaurus, or Thunder-lizard,” he said. “At five tons, elephants are remarkably quiet because the feet have large cartilaginous pads to cushion the stress on the foot bones by the body weight.” Dinosaur prints show a similar cushion adaptation in the feet that would also muffle any sound the foot might make.

“In fact, I suspect a T rex could easily stroll up behind you and you would never know it until too late,” he said. “Not too unlike elephants.”

And speaking of sneaking around, those fiendish Velociraptors are normally three feet in size, max, Carpenter said. In this case, they have been scaled up to the size of its cousin, the Utahraptor (one hangs out in the lobby of the Prehistoric Museum in Price) that lived millions of years before the smaller, chicken-size descendants came along.

So what happened here? Why so many inaccuracies? When Carpenter asked this same question once of his colleague, Jack Horner, Montana State University T rex expert and advisor for the Jurassic Park films, he told Carpenter that his advice was often not heeded.

“They had in mind what they wanted to see on the screen,” Carpenter said. “And so whenever it came down to a choice between the science and the drama, they always went with the drama.”

Carpenter said he supposes the same thing happened with this latest iteration, such as when they depict a giant predatory dinosaur that becomes invisible to sensors by blocking all heat radiation from its body. True, some frogs can control their body temperature, but that doesn’t mean they can shut it entirely down.

And true, paleontologists can try to watch dinosaur movies like these by blocking out all formal training and research, but as Carpenter has shown, it doesn’t mean they can shut all thinking entirely down.

“But if you go in with the attitude of, ‘okay, I want to see a fun movie; I’m going to shut off all reality,’ then yes, maybe you’ll enjoy it,” he said.

Related Links:
USU Eastern Prehistoric Museum